PII: S0040-4039(96)00619-3

(S)-(+)-3-p-Tolylsulfinylbut-3-en-2-one : A Spectacular Oxabutadiene for Asymmetric Cycloaddition of Styrenic Compounds

Patricia Hayes, Gilles Dujardin, Christian Maignan*

Laboratoire de Synthèse Organique associé au CNRS, Université du Maine Avenue Olivier Messiaen, BP 535, F-72017 Le Mans Cedex France.

Abstract: Heterocycloaddition of optically active (S)-(+)-3-p-tolylsulfinylbut-3-en-2-one 1 was successfully achieved with various electron-rich dienophiles in extremely mild and non-catalytic conditions. Nature of the dienophile (enol ether 2 v.s. styrene 3) proved to play a critical role in the stereochemical outcome of the reaction: less than 14% de with 2, more than 94% de with 3. Copyright © 1996 Published by Elsevier Science Ltd

The interest of unsatured sulfoxides in Diels-Alder reaction is obvious¹ and any studies contributing to the development of new sulfoxide intermediates and their reactivities remain of the upmost importance.

In a previous report² was described the first example of intermolecular heterocycloaddition of (S)-(+)-3-p-tolylsulfinylbut-3-en-2-one 1 in inverse electronic demand giving dioxaspiroadduct very easily but with low selectivity from sensitive 2-methylenetetrahydrofuran. The high degree of reactivity of oxabutadiene 1 lead us to extend cycloadditions studies towards: on the first hand acyclic enol ethers 2, and on the other hand styrenic derivatives 3 of lower dienophilicity.

Results reported here³ confirm high reactivity of compound 1 in all cases and show a dramatic influence of the nature of its counterpart on the level of stereoselectivity.

$$[\alpha]_{D} = +299 \text{ (acetone)}$$

$$R, R' = H \text{ or } CH_{3}$$

$$Solvent : CH_{2}Cl_{2} \text{ or } CHCl_{3}$$

$$(Ss,R)-5 \text{ [or } (Ss,S)-5]^{4}$$

$$de = 0 \text{ to } 14 \%$$

Cycloaddition³ of (S)-(+)-3-p-tolylsulfinylbut-3-en-2-one 1 with dienophiles 2, 3 and 6.

Entry	Dienophile	Solvent	Time ^a	T (°C)	Yield ^b (%)	de ^C (%)	Adducts
1	11	CH ₂ Cl ₂	8	20	92	14	d O I
2	0	H ₂ O	2	20	90	36	p-TolMS
3	2 a	CHCl3	8	20	78	12	4a
4	11	CH ₂ Cl ₂	5	20	54	0	e
5	_ _o _	H ₂ O	3	20	21	8	p-Tol
6		CHCl3	5	20	88	4	
	2 b						4b
7		CH ₂ Cl ₂	168	40	5 0	94	0
8		H ₂ O	144	20	66	90	p-Tol
9	OMe	CHCl3	24	61	80	94	OMe
	3a						(Ss,R)-5a [or (Ss,S)-5a]
10		CH ₂ Cl ₂	50	40	80	>99	0
11	OMe	H ₂ O	36	20	64	>99	p-Tol 7
12	3c	CHCl3	15	61	67	>99	OMe
	30						(Ss,R)-5b [or (Ss,S)-5b]
13	MeO	CH ₂ Cl ₂	10	20	78	18	p-Tol .mms
14	OMe	H ₂ O	8	20	48	12	OMe
15		CHCl3	2	61	89	8	OMe
	6				L		7

(a)- Monitored by T.L.C. (Eluent : Ether), (b)- Purified product by chromatography, (c)- Determined by $^1\mathrm{H-NMR}$, 400MHz, (d)- Diastereomerically pure after chromatography, (e)- Diastereomeric mixture after chromatography.

Table

In this systematic study, all reactions were performed without catalyst⁵ and tested in dichloromethane, chloroform and water.

Cycloaddition of ethyl vinyl ether 2a with 1 (Table: entries 1-3) readily occured (at room temperature, in a few hours) with very low selectivity in halogenated solvents; a small enhancement of diastereomeric excess is observed in water together with high yield. Diastereomeric separation of adducts 4a is easily performed by chromatography. Similar results are obtained with 2-methoxypropen 2b in chloroform (entry 6). With this enol ether, aqueous medium seems to cause a significant hydrolysis of adduct 4b into 1,5 diketone 8 6 (entry 5).

Although less reactive, 4-vinylanisole 3 reacts satisfactorily with 1 by refluxing over an extended time. No degradation product is observed under these modified conditions. Thus, after 24 hours of reflux in chloroform, cycloadduct $5a^3$ is obtained in a high diastereoselective manner (de: 94%) and is easily purified as a sole optically pure diastereomer in 80% yield (entry 9).

This amazing level of selectivity in this series was confirmed with 4-isopropenylanisole 3c (entries 10-12) which leads to the desired adduct 5b with a total diastereoselectivity (de > 99%).

Contrast between the different selectivity observed makes attractive the borderline case of 4-(1-methoxyvinyl)anisole 6. Results (entries 13-15) demonstrated unambiguously the dominant effect of methoxy substituent as directing group in the transition state: the low degree of selectivity observed agrees with those obtained with other enol ethers 2a-b. So, high stereochemical control in the formation of adducts would specifically occur when the aromatic moiety of dienophile acts as stereodirecting group.⁴

To conclude, we have found that styrenic compounds can undergo high stereoselective heterocycloaddition with powerful oxabutadiene 1. Litterature contains very few examples of such cycloaddition type⁷⁻⁹: so far, satisfactory yields required high pressure¹⁰ or a suitable heterodiene-catalyst system¹¹. Morever, asymmetric version has been related only in one example and gives modest facial selectivity.¹⁰ So, the powerful stereocontrolled process described suggests extended studies with other styrenic dienophiles and applications in asymmetric synthesis will be reported in due course.

References and Notes

- (a) Carreño, M.C. Chem. Rev., 1995, 95, 1717-1760; (b) Drabowicz, J.; Kielbasinski, P.; Mikolajezyk, M.
 Synthesis of sulfoxides in "The Chemistry of Sulfones and Sulfoxides" Patai, S.; Rappoport, Z. and Stirling, C.
 Eds., John Wiley & Sons Inc.; Colchester, Essex, Great Britain (1988), Chapter 8.
- 2. Gosselin, P.; Bonfand, E.; Hayes, P.; Retoux, R.; Maignan, C. Tetrahedron Asymmetry 1994, 5, 781-784.
- 3. All structures were confirmed by ¹H-NMR, ¹³C-NMR, infrared and mass spectroscopy. Acceptable combustion analyses (±0.3%) or high resolution mass spectra were obtained for all samples. *Representative data and typical procedure for selected compounds*: a mixture of (S)-(+)-3-p-tolylsulfinylbut-3-en-2-one 1 (104 mg; 0.5 mmol) and 4-vinylanisole **3b** (200μL; 1.5 mmol) in dry chloroform (3 mL) was refluxed for 24 hours. After concentration under vacuo, the crude product was purified by chromatography on silica gel (eluent: cyclohexane/ethyl acetate, 8/2) to give the optically pure adduct **5a** (138 mg; 80% yield) as a white solid which was recrystallized in ether / petroleum ether: **5a**: [α]_D + 93 (c 0.66, acetone); mp 72-75°C; ¹H-NMR (CDCl₃) δ 1.54-1.64 (m, 1H), 1.5-1.62 (m, 1H), 1.85-2.07 (m, 1H), 2.32 (s, 1H, CH₃C=C), 2.41 (s, 3H, CH₃Ar), 2.49 (dd, J=16, 5 Hz, 1H), 3.79 (s, 3H, CH₃O), 4.66 (dd, J=11 Hz, 1H, CHO), 6.88-7.22

(AB system, J=8 Hz, $4H_{arom}$). ¹³C-NMR (CDCl₃) δ 15.5, 17.8, 21.3, 29.4, 55.3, 78.4, 113.5, 114.0, 124.5, 127.4, 129.6, 140.0, 140.2, 159.5, 159.6. **4a**: $[\alpha]_D$ + 114 (c 0.5, acetone); mp 72-75°C (petroleum ether); ¹H-RMN (CD₃COCD₃) δ 1.17 (t, J=7 Hz, 3H, CH₃-CH₂), 1.56-1.91 (m, 4H), 2.27 (s, 3H, CH₃C=C) 2.39 (s, 3H, CH₃Ar), 3.55 (dq, J=9, 7 Hz, 1H, CH₂O), 3.85 (dq, J=9, 7 Hz, 1H, CH₂O), 5.08 (t, J=2.5 Hz, 1H, CHO), 7.2-7.38 (AB system, J=8 Hz, 4H_{arom}); ¹³C-RMN (CD₃COCD₃) δ 10.9, 15.2, 15.5, 21.2, 26.2, 63.9, 97.3, 113.9, 124.5, 129.6, 140.1, 140.2, 156.1. $[\alpha]_D$ - 232 (c 0.95, acetone); mp 82-85°C (ether); ¹H-RMN (CD₃COCD₃) δ 1.23 (t, J=7 Hz, 3H, CH₃-CH₂), 1.52-1.91 (m, 4H), 2.28 (s, 3H, CH₃C=C); 2.40 (s, 3H, CH₃Ar), 3.64 (dq, J=9, 7 Hz, 1H, CH₂O), 3.73 (dq, J=9, 7 Hz, 1H, CH₂O), 4.93 (dd, J=5, 2.5 Hz, 1H, CHO), 7.28-7.42 (AB system, , J=8 Hz, 4H_{arom}); ¹³C-RMN (CD₃COCD₃) δ 12.8, 15.0, 17.6, 21.2, 26.6, 64.4, 98.6, 112.2, 124.9, 130.0, 140.3, 142.7, 156.6. **4b**: 1 H-RMN δ 1.36/1.42 (2s, 3H, CH₃-C-O), 1.41-1.70 (m, 2H), 1.88-1.95 (m, 1H), 2.34 (s, 3H, CH₃C=C), 2.39 /2.40 (2s, 3H, CH₃Ar), 2.41-2.52 (m, 1H), 3.24-3.31 (2s, 3H, CH₃-O), 7.27-7.41 (4d, AA'BB' system, J=8 Hz, $4H_{arom}$); 13 C-RMN δ 11.9/13.4, 17.4/17.7, 21.3, 22.4, 30.9/31.7, 49.1/51.7, 99.1/99.8, 114.1/114.4, 124.3/124.4, 129.6, 139.7/140.0, 140.2/140.5. **5b** : $[\alpha]_D + 156$ (c 0.85, acetone); mp 120-121°C (ether/petroleum ether); 1 H-RMN δ 1.39 (s, 3H, CH₃), 1.47-1.58 (m, 1H), 1.78 (dt, J=12, 6 Hz, 1H), 1.98-2.24 (m, 2H), 2.37 (s, 1H, CH₃C=C), 2.40 (s, 3H, CH₃Ar), 6.85-7.22 (AB system, J=8.8 Hz, $4H_{arom}$), 7.28-7.40 (AB system, J=8.1 Hz, $4H_{arom}$); 13 C-RMN δ 13.5, 18.2, 21.3, 26.6, 33.1, 55.3, 79.2, 112.7, 113.8, 124.3, 125.5, 129.6, 137.11, 140.1, 140.4, 157.5, 158.7. 7: 1H-RMN δ 1.43-2.57 (m, 4H), 2.32/2.37 (s, 3H, CH₃C=C), 2.37/2.38 (s, 3H, CH₃Ar), 3/3.06 (s, 3H, CH₃O), 3.77 (s, 3H, CH₃O), 6.28 -7.39 (m, 8H, H_{arom}); ¹³C-RMN δ 12.5/13.8, 17.4/17.6, 21.3/21.4, 33.7/34.4, 50.1/50.4, 55.3, 100.8/101.5, 113.7/113.8, 115.1/115.2, 124.3/124.4, 127.3, 129.6, 131.7/132.0, 139.5, 140.2, 155.5/155.8, 159.6.

- 4. The determination of absolute configuration of adducts 5 is under progress by X-Ray crystallography and by chemical correlation to known enantiopure lactones and will be published in a full paper.
- 5. Use of catalyst (Et₂AlCl, Eu(fod)₃ for example) has been unsuccessfully carried out in the case of ethyl vinyl ether.
- 6. Epimeric mixtures of 1,5 diketones 8 are observed (ratio 4b/8 : 1/1) and characterized by infrared spectroscopy v_{max} : 1710 (C=O), 1031 (S=O) cm⁻¹.

- 7. Smith, CW.; Norton, D.; Ballard, S. J. Am. Chem. Soc., 1951, 73, 5273-5280.
- 8. Ismail, ZM.; Hoffmann, H.M.R. Angew. Chem. Int. Ed. Engl., 1982, 21, 859-860.
- 9. Hall, Jr. H.K.; Abdelkader, M. J. Org. Chem., 1981, 46, 2948-2853.
- 10. Schmidt, R.R.; Frich, W.; Haag-Zeino, B.; Apparao, S. Tetrahedron Lett., 1987, 28, 4045-4048.
- 11. Dujardin, G.; Maudet, M.; Brown, E. Tetrahedron Lett., 1994, 46, 8619-8622.

(Received in France 18 March 1996; accepted 1 April 1996)